

Author : Chris Drawater
Date : 20/01/2006
Version : 1.1

PostgreSQL 8.1 on Solaris 10 – Deployment Guidelines

Abstract

Advance planning enables PostgreSQL 8.1 to be quickly deployed in a basic but resilient and IO
efficient manner.

Document Status

This document is Copyright © 2006 by Chris Drawater.

This document is freely distributable under the license terms of the GNU Free Documentation License
(http://www.gnu.org/copyleft/fdl.html). It is provided for educational purposes only and is NOT
supported.

Introduction

This paper documents how to deploy PostgreSQL 8.1 in a basic but both resilient and IO efficient
manner.

It is based upon experience with the following configurations =>
PostgreSQL 8.1.1 on Solaris 10

using the PostgreSQL distributions =>
postgresql-base-8.1.1.tar.gz

© Chris Drawater, 2006 PostgreSQL 8.1 on Solaris 10, v1.1 p1/10

Background for Oracle DBAs

For DBAs coming from an Oracle background, PostgreSQL has a number of familiar concepts including
Checkpoints
Tablespaces
MVCC concurrency model
Write ahead log (WAL)+ PITR
Background DB writer
Statistics based optimizer
Recovery = Backup + archived WALs + current WALs

However , whereas 1 Oracle instance (set of processes) services 1 physical database, PostgreSQL differs in
that

1 PostgreSQL “cluster” services n * physical DBs
1 cluster has tablespaces (accessible to all DBs)
1 cluster = 1 PostgreSQL instance = set of server processes etc (for all DBs) + 1 tuning config +

1 WAL
User accounts are cluster wide by default
There is no undo or BI file – so to support MVCC, the “consistent read” data is held in the tables

themselves and once obsolete needs to be cleansed out using the ‘vacuum’ utility.
There is no dedicated log writer process.

The basic PostgreSQL deployment guidelines for Oracle aware DBAs are to =>
Create only 1 DB per cluster
Have 1 superuser per cluster
Let only the superuser create the database
Have one user to create/own the DB objects + n* end users with appropriate read/write access
Use only ANSI SQL datatypes and DDL.
Wherever possible, avoid DB specific SQL extensions so as to ensure cross-database portability

IO distribution & disc layouts

It is far better to start out with good disc layouts rather than retro-fix a production database.

As with any DBMS, for resilience, the recovery components (eg. backups , WAL, archived WAL logs)
should kept on devices separate from the actual data.

So the basic rules for resilience are as follows :

For non disc array systems =>
keep recovery components separate from data on dedicated discs etc
keep WAL and data on separate disc controllers
mirror WAL across discs (preferably across controllers) for protection against WAL spindle loss

For SAN based disc arrays (eg HP XP12000) =>
keep recovery components separate from data on dedicated LUNs etc
use Host Adapter Multipathing drivers (such as mpxio) with 2 or more HBAs for access to

SAN .

Deploy application data on mirrored/striped (ie RAID 1+0) or write-cache fronted RAID 5 storage.
The WAL log IO should be configured to be osync for resilience (see basic tuning in a later section).

Whenever possible, ensure that every PostgreSQL component (including binaries etc) resides on resilient
disc storage !

© Chris Drawater, 2006 PostgreSQL 8.1 on Solaris 10, v1.1 p2/10

Moving onto IO performance, it is worth noting that WAL IO and general data IO access have different
IO characteristics.

WAL sequential access (write mostly)
Data sequential scan, random access write/read

The basic rules for good IO performance are as follows :
use tablespaces to distribute data and thus IO across spindles or disc array LUNs
keep WAL on dedicated spindles/LUNs (mirror/stripe in preference to RAID 5)
keep WAL and arch WAL on separate spindles to reduce IO on WAL spindles.

RAID or stripe data across discs/LUNs in 1 Mb chunks/units if unsure as to what chunk size to use.

For manageability, keep the software distribution and binaries separate from the database objects.
Likewise, keep the system catalogs and non-application data separate from the application specific data.

5 distinct storage requirements can be identified =>
Software tree (Binaries, Source, distr)
Shared PG sys data
WAL logs
Arch WAL logs
Application data

FS required

For the purposes of this document , the following minimal set of FS are suggested =>

/opt/postgresql/8.1.1 # default 4 Gb for software tree
/var/opt/postgresql # default 100 Mb
/var/opt/postgresql/CLUST/sys # default size 1Gb for shared sys data
/var/opt/postgresql/CLUST/wal # WAL location
/var/opt/postgresql/CLUST/archwal # archived WALs
/var/opt/postgresql/CLUST/data # application data + DB sys catalogs

where CLUST is your chosen name for the Postgres DB cluster

For enhanced IO distribution , a number of …/data FS (eg data01, data02 etc) could be deployed.

If using UFS or VxFS filesystems consider using direct IO for the following FS =>
/var/opt/postgresql/CLUST/wal # use directIO
/var/opt/postgresql/CLUST/data # use directIO if very write intensive

With UFS, add the following options
forcedirectio, noatime

to the relevant FS mount directives in /etc/vfstab .

© Chris Drawater, 2006 PostgreSQL 8.1 on Solaris 10, v1.1 p3/10

Installation Pre-requisites !

The GNU compiler and make software utilities (available on the Solaris 10 installation CDs) =>

gcc (compiler) ($ gcc --version => 3.4.3)
gmake (GNU make)

are required and once installed, should be found in

/usr/sfw/bin

Create the Unix acct
postgres

in group dba
with a home directory of say /export/home/postgresql
using

$ useradd utility
or hack

/etc/group then /etc/passwd then run pwconv and then passwd postgres

Assuming the following FS have been created =>

/opt/postgresql/8.1.1 # default 4 Gb for the PostgreSQL software tree
/var/opt/postgresql # default 100 Mb

create directories
/opt/postgresql/8.1.1/source # source code
/opt/postgresql/8.1.1/distr # downloaded distribution

all owned by user postgres:dba with 700 permissions

To ensure, there are enough IPC resources to use PostgreSQL, edit /etc/system and add the following
lines =>

set shmsys:shminfo_shmmax=1300000000
set shmsys:shminfo_shmmin=1
set shmsys:shminfo_shmmni=200
set shmsys:shminfo_shmseg=20
set semsys:seminfo_semmns=800
set semsys:seminfo_semmni=70
set semsys:seminfo_semmsl=270 # defaults to 25

set rlim_fd_cur=1024 # per process file descriptor soft limit
set rlim_fd_max=4096 # per process file descriptor hard limit

Then on the console (log in as root) =>

$ init 0
{a} ok boot -r

© Chris Drawater, 2006 PostgreSQL 8.1 on Solaris 10, v1.1 p4/10

Download Source

Download the source codes from http://www.postgresql.org (and if downloaded via Windows,
remember to ftp in binary mode) =>

Distributions often available include =>
postgresql-XXX.tar.gz => full source distribution.
postgresql-base-XXX.tar.gz => Server and the essential client interfaces
postgresql-opt-XXX.tar.gz => C++, JDBC, ODBC, Perl, Python, and Tcl interfaces, as well as multibyte
support
postgresql-docs-XXX.tar.gz => html docs
postgresql-test-XXX.tar.gz => regression test

For a working, basic PostgreSQL installation supporting JDBC applications, simply use the ‘base’
distribution.

Create Binaries

Unpack Source =>

$ cd /opt/postgresql/8.1.1/distr
$ gunzip postgresql-base-8.1.1.tar.gz

$ cd /opt/postgresql/8.1.1/source
$ tar -xvof /opt/postgresql/8.1.1/distr/postgresql-base-8.1.1.tar

Set Unix environment =>

TMPDIR=/tmp
PATH=/usr/bin:/usr/ucb:/etc:.:/usr/sfw/bin:usr/local/bin:n:/usr/ccs/bin:$PATH
export PATH TMPDIR

Configure the build options =>

$ cd /opt/postgresql/8.1.1/source/postgresql-8.1.1
$./configure --prefix=/opt/postgresql/8.1.1 --with-pgport=5432 --without-readline

CC=/usr/sfw/bin/gcc CFLAGS='-O3'
Note => --enable-thread-safety option failed

The CFLAGS flag is optional (see gcc 3.4.4 optimize Options)
And build =>

$ gmake
$ gmake install

On an Ultra 5 workstation, this gives 32 bit executables

© Chris Drawater, 2006 PostgreSQL 8.1 on Solaris 10, v1.1 p5/10

Setup Unix environment

Add to the Unix environment, the following =>

LD_LIBRARY_PATH=/opt/postgresql/8.1.1/lib
PATH=/opt/postgresql/8.1.1/bin:$PATH
export PATH LD_LIBRARY_PATH

PGDATA=/var/opt/postgresql/CLUST/sys # PG sys data , used by all DBs
export PGDATA

At this point, it’s probably worth creating a .profile as per Appendix 1.

Create Database(Catalog) Cluster

Assuming the following FS has been created =>

/var/opt/postgresql/CLUST/sys # default size 1Gb

where CLUST is your chosen name for the Postgres DB cluster,
initialize the database storage area, and create the shared catalogs and template database template1 =>

$ initdb -E UNICODE -A password -W
DBs have default Unicode char set, user basic passwords, prompt for super user password

Startup, Shutdown and Basic Tuning

Check the start & shutdown of the PostgreSQL cluster =>

$ pg_ctl start -l /tmp/logfile
$ pg_ctl stop

Next, tune the PostgreSQL instance by editing the configuration file $PGDATA/postgresql.conf .

First take a safety copy =>

$ cd $PGDATA
$ cp postgresql.conf postgresql.conf.orig

then make the following (or similar changes) to postgresql.conf =>

listener
listen_addresses = 'localhost'
port = 5432

data buffer cache
shared_buffers = 10000 # each 8Kb so depends upon memory available

log related
fsync = on # resilience
wal_sync_method = open_sync # resilience
commit_delay = 10000 # group commit if works (in microseconds)
commit_siblings = 3

© Chris Drawater, 2006 PostgreSQL 8.1 on Solaris 10, v1.1 p6/10

archive_command = 'cp "%p" /var/opt/postgresql/CLUST/archwal/"%f"'

#checkpoints
checkpoint_segments = 3 # default
checkpoint_timeout = 300 # default
checkpoint_warning = 30 # default – logs warning if ckpt interval < 30s

server error log
log_line_prefix = '%t :' # timestamp
log_min_duration_statement = 1000 # log any SQL taking more than 1000ms
log_min_messages = info

vacuuming
autovacuum = on
stats_start_collector = on
stats_row_level = on

#transaction/locks
default_transaction_isolation = 'read committed'

This is a basic ‘first-cut’ tuning which will need modification and enhancement with real application
workloads.

Restart the servers =>

$ pg_ctl start -l /tmp/logfile

Create the Database

This requires the filesystems =>

/var/opt/postgresql/CLUST/wal # WAL location
/var/opt/postgresql/CLUST/archwal # archived WALs
/var/opt/postgresql/CLUST/data # application data + DB sys catalogs

plus maybe also =>

/var/opt/postgresql/CLUST/backup # optional backup staging area for tape

Create the clusterwide tablespaces (in this example, a single tablespace named ‘appdata’) =>

$ psql template1
....
template1=# CREATE TABLESPACE appdata LOCATION '/var/opt/postgresql/CLUST/data';
template1=# SELECT spcname FROM pg_tablespace;
 spcname

 pg_default
 pg_global
 appdata
(3 rows)

and add to the server config =>

© Chris Drawater, 2006 PostgreSQL 8.1 on Solaris 10, v1.1 p7/10

default_tablespace = 'appdata'

Next, create the database itself (eg name = db9, unicode char set) =>

$ createdb -D appdata -E UNICODE -e db9 # appdata = default TABLESPACE
$ createlang -d db9 plpgsql # install 'Oracle PL/SQL like' language

WAL logs are stored in the directory pg_xlog under the data directory. Shut the server down & move the
directory pg_xlog to /var/opt/postgresql/CLUST/wal and create a symbolic link from the original location
in the main data directory to the new path.

$ pg_ctl stop
$ cd $PGDATA
$ mv pg_xlog /var/opt/postgresql/CLUST/wal
$ ls /var/opt/postgresql/CLUST/wal
$ ln -s /var/opt/postgresql/CLUST/wal/pg_xlog $PGDATA/pg_xlog # soft link as across FS
$ pg_ctl start -l /tmp/logfile

Assuming all is now working OK, shutdown PostgreSQL & backup up all the PostgreSQL related FS
above… just in case…!

User Accounts

Create only a single ‘power user’ to create/own/control the tables (using psql) =>

$ psql template1
create user cxd with password 'abc';
grant create on tablespace appdata to cxd;

where , in this example, cxd username

Do not create any more superusers or users that can create databases!
Do not create any more ‘power users’ !

Now create n* ‘end user’ accounts to work against the data =>

$psql template1
CREATE GROUP endusers;
create user enduser1 with password 'xyz';
ALTER GROUP endusers ADD USER enduser1;

The basic idea is for a single PostgreSQL cluster to support only 3 user categories =>
1 ‘super user’ the DBA acct - eg postgres acct
1 ‘power user’ to own/manage the tables etc - eg cxd in the above example
n * ‘end users’ to access data only through the applications

Once the tables/indexes/procedures etc have been created by ‘power user’ cxd above, access permissions
similar to below can then be granted to the ‘end user’ accts.

$ psql db9 cxd
grant select. on <table>. to group endusers;

© Chris Drawater, 2006 PostgreSQL 8.1 on Solaris 10, v1.1 p8/10

Configure PostgreSQL to accept JDBC Connections

To allow the postmaster listener to accept TCP/IP connections from client nodes running the JDBC
applications, edit the server configuration file and change

listen_addresses = '*' # * = any IP interface

Alternatively, this parameter can specify only selected IP interfaces (see documentation).

In addition, the client authentication file will need to edited to allow access to our database server.

First take a backup of the file =>

$ cp pg_hba.conf pg_hba.conf.orig

Add the following line =>

host db9 cxd 0.0.0.0/0 password

where , for this example, database db9, user cxd, auth password

Concluding Remarks

At this stage, you should now have a working PostgreSQL 8.1 with the foundations laid for :
A reasonably good level of resilience (recoverability)
A good starting IO distribution

Next stage is server configuration tuning but that will be heavily dependent upon your applications
workload and choice of hardware…

Chris Drawater has been working with RDBMSs since 1987 and the JDBC API since late 1996, and can
be contacted at chris.drawater@three.co.uk or drawater@compuserve.com .

© Chris Drawater, 2006 PostgreSQL 8.1 on Solaris 10, v1.1 p9/10

Appendix 1 – Example .profile

TMPDIR=/tmp
export TMPDIR

PATH=/usr/bin:/usr/ucb:/etc:.:/usr/sfw/bin:usr/local/bin:n:/usr/ccs/bin:$PATH
export PATH

########################
PostgreSQL 811 runtime
########################

LD_LIBRARY_PATH=/opt/postgresql/8.1.1/lib
PATH=/opt/postgresql/8.1.1/bin:$PATH
export PATH LD_LIBRARY_PATH

PGDATA=/var/opt/postgresql/CLUST/sys
export PGDATA

© Chris Drawater, 2006 PostgreSQL 8.1 on Solaris 10, v1.1 p10/10

